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ABSTRACT

Radiation emitted by nonthermal particles accelerated during relativistic magnetic reconnection is

critical for understanding the nonthermal emission in a variety of astrophysical systems, including

blazar jets, black hole coronae, pulsars, and magnetars. By means of fully kinetic Particle-in-Cell

(PIC) simulations, we demonstrate that reconnection-driven particle acceleration imprints an energy-

dependent pitch-angle anisotropy and gives rise to broken power laws in both the particle energy

spectrum and the pitch-angle anisotropy. The particle distributions depend on the relative strength of

the non-reconnecting (guide field) versus the reconnecting component of the magnetic field (Bg/B0)

and the lepton magnetization (σ0). Below the break Lorentz factor γ0 (injection), the particle energy

spectrum is ultra-hard (p< < 1), while above γ0, the spectral index p> is highly sensitive to Bg/B0.

Particles’ velocities align with the magnetic field, reaching minimum pitch angles α at a Lorentz factor

γminα controlled by Bg/B0 and σ0. The energy-dependent pitch-angle anisotropy, evaluated through

the mean of sin2 α of particles at a given energy, exhibits power-law ranges with negative (m<) and

positive (m>) slopes below and above γminα, becoming steeper as Bg/B0 increases. The generation of

anisotropic pitch angle distributions has important astrophysical implications. We address their effects

on regulating synchrotron luminosity, spectral energy distribution, polarization, particle cooling, the

synchrotron burnoff limit, emission beaming, and temperature anisotropy.

1. INTRODUCTION

Magnetic reconnection plays a pivotal role in astro-

physical plasmas, enabling the topological reconfigura-

tion of magnetic field lines and the rapid conversion of

magnetic energy into kinetic energy (Biskamp 2000; Kul-

srud 2005; Ji et al. 2022). It is widely recognized as the

key mechanism driving a variety of energetic phenom-

ena, including solar flares (e.g. Shibata & Magara 2011;

Guo et al. 2020), γ-ray emission from pulsar magneto-

spheres (e.g. Cerutti et al. 2016; Hakobyan et al. 2023),

flares in the Crab Nebula (e.g. Cerutti et al. 2013; Lyu-

tikov et al. 2018), and γ-ray flares from active galactic

nuclei (e.g. Giannios et al. 2009; Sobacchi et al. 2023).

Indeed, it is believed that particle acceleration colli-

sionless via magnetic reconnection powers the observed

bright nonthermal radiation associated with these astro-

physical phenomena.

In magnetically dominated astrophysical environ-

ments, the magnetic energy density available for recon-
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nection can exceed not only the plasma pressure but

also the rest mass energy density of the plasma. Under

such conditions, the Alfvén speed approaches the speed

of light, promoting magnetic reconnection in the rela-

tivistic regime. While analytical studies have provided

comprehensive insights into the dynamics of relativis-

tic reconnection (Lyutikov & Uzdensky 2003; Lyubarsky

2005; Comisso & Asenjo 2014), capturing the particle

acceleration process necessitates first-principles numer-

ical simulations. An extensive exploration of particle

acceleration in relativistic reconnection has been un-

dertaken through a multitude of Particle-in-Cell (PIC)

studies (e.g. Zenitani & Hoshino 2001; Jaroschek et al.

2004; Lyubarsky & Liverts 2008; Bessho & Bhattachar-

jee 2012; Cerutti et al. 2012a; Kagan et al. 2013; Sironi

& Spitkovsky 2014; Guo et al. 2014; Melzani et al. 2014;

Werner et al. 2016). It is now well-established that colli-

sionless relativistic reconnection gives rise to nonthermal

particle distributions when the reconnecting magnetic

field is much larger than the non-reconnecting compo-

nent of the magnetic field, known as the ‘guide field’.

The presence of even a moderate guide field can signif-

icantly alter the reconnection dynamics and the particle

energization process. Recent simulations investigating
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collisionless magnetic reconnection within a turbulence

cascade (Comisso & Sironi 2019; Comisso et al. 2020;

Comisso & Sironi 2021, 2022) have uncovered that the

guide field not only shapes the distribution of particle

energies but also controls the distribution of pitch an-

gles—namely, the angles between particle velocities and

the local magnetic field. These simulations have demon-

strated that reconnection within turbulence can induce

a pronounced energy-dependent pitch-angle anisotropy,

the extent of which depends on the strength of the guide

field.

Accurately predicting the pitch angle distribution

of the emitting particles is of paramount importance

for interpreting synchrotron radiation from high-energy

sources such as pulsar wind nebulae (e.g. Hester 2008;

Reynolds et al. 2017; Lyutikov et al. 2019), magneto-

spheres of supermassive black holes (e.g. Johnson et al.

2015; Event Horizon Telescope Collaboration et al. 2019,

2022), jets from active galactic nuclei (e.g. Tavecchio

et al. 2018; de Jaeger et al. 2023; Di Gesu et al. 2023) or

γ-ray bursts (e.g. Burgess et al. 2014; Oganesyan et al.

2017; Ravasio et al. 2019; Burgess et al. 2020). How-

ever, the role of isolated reconnection layers in generat-

ing pitch angle anisotropy has remained unexplored.

In this paper, we investigate the simultaneous gener-

ation of energetic particles and pitch-angle anisotropy

within collisionless reconnection layers through rigor-

ous first-principles PIC simulations. We demonstrate

that reconnection-driven particle acceleration results

in energy-dependent pitch-angle anisotropy and broken

power laws in both the particle energy spectrum and the

pitch-angle anisotropy. Their properties are determined

by the relative strength of the guide field compared to

the reconnecting magnetic field. Additionally, spectral

features, including breaks and power-law slopes, depend

on both guide field strength and magnetization. Re-

markably, the low-energy (injection) spectrum exhibits

very weak sensitivity to guide field strength and magne-

tization, whereas spectral properties above the injection

range display significant dependencies on these parame-

ters.

This paper is organized as follows. In Section 2, we de-

scribe our numerical approach and simulation setup. In

Section 3, we present the results of our fully kinetic sim-

ulations. This includes scalings of the reconnection rate,

the self-consistent particle energy distributions, and the

simultaneous energy-dependent pitch-angle anisotropy.

We provide relationships for characterizing breaks in the

power laws of the particle energy distributions, as well as

breaks in the power laws of the energy-dependent pitch-

angle anisotropy. In Section 4, we discuss several as-

trophysical implications of the energy-dependent pitch-

angle anisotropy. Specifically, we examine the role of

the pitch-angle anisotropy in regulating the synchrotron

luminosity, the spectral energy distribution, polariza-

tion of synchrotron radiation, particle cooling, the syn-

chrotron burnoff limit, emission beaming, and tempera-

ture anisotropy. Finally, in Section 5 we summarize our

findings.

2. NUMERICAL METHOD AND SETUP

We solve the relativistic Vlasov-Maxwell system of

equations employing the PIC method (Birdsall & Lang-

don 1985) with the publicly available code TRISTAN-

MP (Buneman 1993; Spitkovsky 2005). Our simulations

are carried out in a two-dimensional domain where we

track all three components of the electromagnetic field

and particle momenta. The computational domain is

periodic in the x-direction and continually expands in

the y-direction, where two moving injectors, receding

from y = 0 at the speed of light, continuously introduce

fresh magnetized plasma into the simulation domain (see

Sironi & Spitkovsky (2014) for additional details).

The plasma consists of electrons and positrons, with

an ambient particle density of n0. We initialize the par-

ticles based on a Maxwell-Jüttner distribution charac-

terized by a thermal spread θ0 = kBT0/mec
2, where

T0 denotes the temperature, kB is the Boltzmann con-

stant, me is the electron mass, and c is the speed of

light. For the initial current sheet, we adopt a Har-

ris sheet equilibrium with magnetic field given by B =

B0 tanh (y/λ)x̂ + Bgẑ, where B0 is the strength of the

reconnecting magnetic field, Bg is the strength of the

guide field, and λ is the half-thickness of the current

sheet. The particle density profile across the current

sheet follows n = n0[1+3 cosh−2(y/λ)]. Particles within

the current sheet have a drift velocity in the z-direction,

ensuring the current density satisfies Ampére’s law.

The initial current sheet is unstable to tearing modes

(Furth et al. 1963), as determined by the tearing sta-

bility index ∆′ = (2/λ)[(kλ)−1 − kλ], where k denotes

the perturbation wavenumber. Tearing modes grow

when ∆′ > 0, implying that the Harris sheet is unsta-

ble to modes with kλ < 1. We set λ = 5de, where

de = c/ωp represents the plasma skin depth, ωp is the

plasma frequency defined as ωp = (4πn0e
2/me)

1/2, and

e denotes the electron charge. To initiate reconnection,

we perturb the Harris sheet equilibrium with a small-

amplitude, long-wavelength perturbation. For the com-

putational domain in the x-direction, we adopt a half-

length of Lx = 1200de. We employ a grid cell size of

∆x = 0.25de and initialize 16 particles per cell for the

ambient plasma. We set the numerical speed of light to
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0.45 cells per time step, ensuring that the CFL condition

is satisfied.

In our simulations, we adopt θ0 = kBT0/mec
2 = 0.03.

Our results are not sensitive to the initial dimension-

less temperature θ0 except for an overall energy rescal-

ing (Comisso & Sironi 2019). The strength of the re-

connecting magnetic field is parametrized by the lep-

ton magnetization σ0 = B2
0/4πn0mec

2. The magneti-

zation associated with the combined magnetic field is

σ = (ωL/ωp)
2 = σ0 + σg, where ωL = eB/mec rep-

resents the nonrelativistic Larmor frequency and σg =

B2
g/4πn0mec

2 corresponds to the magnetization associ-

ated with the guide field. To comprehensively explore

the parameter space defined by the two fundamental pa-

rameters of the problem, Bg and σ0, we conduct 35 sim-

ulations, spanning 7 different values of the guide field,

Bg = (1/8, 1/4, 1/2, 1, 2, 4, 8)B0, and 5 different values

of magnetization, σ0 = (4, 8, 16, 32, 64).

In all simulations, the Alfvén speed associated with

the reconnecting field approaches the speed of light,

vA0 = c
√

σ0/(1 + σ0) ≃ c. Each simulation runs for

a minimum duration of t = 5(Lx/c)max[1, Bg/B0], en-

suring we have an adequate time range to assess the

steady-state properties of the system. We conduct our

analysis on a large subset of particles that were ran-

domly selected and tracked over time in each PIC sim-

ulation. The analysis excludes particles initially set up

in the current sheet, as their properties depend on the

initialization choices.

3. RESULTS

In Figure 1(a), we illustrate how the reconnection rate

evolves over time in simulations that vary in guide field

magnitude. The normalized reconnection rate is calcu-

lated exactly as

Rrec(t) =
1

cB0

∂

∂t

(
max(Az)−min(Az)

)
, (1)

where Az is the z-component of the magnetic vector po-

tential, evaluated at the resonant surface. After the

initial linear growth phase preceding the onset of fast

reconnection, the reconnection rate approaches a statis-

tical steady state. Figure 1(a) shows that the reconnec-

tion rate decreases as the guide field strength increases.

In particular, the reconnection rate, when time-averaged

in the near steady state, is approximately

⟨Rrec⟩ ≃ 0.1
B0

(B2
0 +B2

g)
1/2

. (2)

The drop in the reconnection rate with increasing guide

field strength results from the reduced outflow velocity

in the reconnection layer. Indeed, in approximate steady
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Figure 1. (a) Time evolution of the reconnection rate Rrec

for simulations with magnetization σ0 = 16 spanning a broad
range of guide field strengths Bg. (b) Time-averaged recon-
nection rate (⟨Rrec⟩) and maximum outflow velocity normal-
ized to the speed of light (⟨vout⟩/c) during the statistical
steady-state regime (t ≳ Lx/c after the peak of the recon-
nection rate) for the same simulations. (c) 2D histogram
of the statistical steady-state reconnection rate ⟨Rrec⟩ as a
function of the dimensionless guide field strength Bg/B0 and
the magnetization σ0.

state, the reconnection rate Rrec = Erec/B0 ≃ vin/c ≃
0.1vout/c (Comisso & Bhattacharjee 2016; Cassak et al.

2017) scales with the outflow velocity. Given that the

projection of the Alfvén speed into the outflow direction

is vA cos ζ, with ζ = arctan(Bg/B0), the outflow velocity

in the statistical steady state is expected to decrease
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(f) Bg = 8B0

Figure 2. Snapshots of the electric current density and the mean kinetic energy per particle in the statistical steady-state
regime for magnetic reconnection with varying guide field strength. The top-to-bottom panels correspond to guide field strengths
of (a) Bg = B0/8, (b) Bg = B0, and (c) Bg = 8B0 for the out-of-plane current density Jz (in units of en0c), while panels (d),
(e), and (f) illustrate the cell-averaged mean kinetic energy per particle ⟨γ − 1⟩cell (normalized by mec

2) for the same guide
field strengths. The snapshots are taken at times around t ∼ 2Lx(B

2
0 +B2

g)
1/2/B0c, corresponding to similar stages of nonlinear

evolution. To emphasize the small-scale structures in the reconnection layer, we limit the displayed domain region to |y| ≤ 150de.
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with the guide field strength as

⟨vout⟩ ≃
cB0

(B2
0 +B2

g)
1/2

. (3)

This is indeed confirmed by the scaling shown in Figure

1(b). Finally, in Figure 1(c), we present the statisti-

cal steady-state reconnection rate measured throughout

our entire simulation campaign. In the σ0 ≫ 1 regime

of interest here, the reconnection rate becomes largely

independent of the magnetization parameter σ0, while

maintaining its strong dependence on the strength of the

guide field.

In Figure 2, we show representative snapshots of the

reconnection layer during the highly nonlinear phase

of the reconnection process for simulations with σ0 =

16 and varying guide field strength, namely Bg =

(1/8, 1, 8)B0. The reconnection layer undergoes frag-

mentation, resulting in the formation of secondary cur-

rent sheets and plasmoids (Comisso et al. 2016, 2017;

Uzdensky & Loureiro 2016), where plasmoids are the

distinctive island-like structures that form within the

reconnecting current sheet. This phenomenon is de-

picted in panels (a)-(c), which display the electric cur-

rent density in the out-of-plane direction. As the guide

field strength increases, both the number of plasmoids

and their hierarchical scale separation diminish. Fur-

thermore, the inter-plasmoid current sheets transition

to an open Petschek-like configuration (Comisso et al.

2013). This open, X-type configuration (as opposed to

the Y -type Sweet-Parker-like geometry) effectively in-

hibits the formation of further plasmoids in the presence

of a strong guide field (compare panel (c) with panel

(a)). In panels (d)-(f), we show the cell-averaged ki-

netic energy per electron. With increasing guide field

strength, high-energy particle regions become more lo-

calized, predominantly aligning with X-points and plas-

moid boundaries.

Particles energized by reconnection display pro-

nounced nonthermal tails, as illustrated in Figure 3.

In particular, Fig. 3(a) shows electron energy spectra

integrated over the entire reconnection region (specifi-

cally for |y| ≤ 0.25Lx) for σ0 = 16 with varying guide

field strength, while Fig. 3(b) displays analogous en-

ergy spectra for Bg = B0 with varying lepton magne-

tization. These spectra are evaluated at a developed

stage, about tdev ≃ 3Lx/⟨vout⟩ ≃ 3Lx(B
2
0 +B2

g)
1/2/B0c

from the onset of fast reconnection. A distinct charac-

teristic of these particle energy spectra is their broken

power-law structure. Specifically, for lepton magnetiza-

tion σ0 ≫ 1 and relativistic particles, the particle energy

-1/2

-2
Bg = B0/8
Bg = B0/4
Bg = B0/2
Bg = B0

Bg = 2B0

Bg = 4B0

Bg = 8B0

10-1 100 101

(γ-1)/σ0

10-8

10-6

10-4

10-2

100

dN
/d
γ

(a)

-3/4

-2

σ0 = 64
σ0 = 32
σ0 = 16
σ0 = 8
σ0 = 4

100 101 102 103

γ-1

10-8

10-6

10-4

10-2

100

dN
/d
γ

(b)

Figure 3. Particle energy spectra dN/dγ at late times, t ≃
3Lx(B

2
0+B2

g)
1/2/B0c, when the spectra have fully developed.

Panel (a) showcases simulations with fixed σ0 = 16 and vary-
ing guide field strengths Bg = (1/8, 1/4, 1/2, 1, 2, 4, 8)B0,
while panel (b) features simulations with fixed Bg/B0 = 1
and varying lepton magnetization σ0 = (4, 8, 16, 32, 64).
Dashed lines indicating power-law slopes are provided for
reference.

spectra follow

N(γ)dγ =

K(γ/γ0)
−p<dγ , γth < γ < γ0

K(γ/γ0)
−p>dγ , γ0 < γ < γcut

(4)

Here, γ0 is the break Lorentz factor that separates the

two power law ranges, with p< and p> indicating the

power-law indices for the lower and upper ranges, re-

spectively. Additionally, γth and γcut denote the ther-

mal Lorentz factor and high-energy cutoff Lorentz fac-

tor, while K is a normalization constant.

Our simulations indicate that γ0 = κσ0, with κ ≃ 0.2,

as depicted in Fig. 3(a). Notably, κ exhibits mini-

mal variation with respect to the guide field, with only

a slight increase as Bg increases. It remains within a

two-fold range over the entire scan from Bg = B0/8 to

Bg = 8B0. On the other hand, an increase in Bg/B0

significantly reduces the normalization constant K, as

evidenced in Fig. 3(a). Indeed, the number efficiency,

defined as the fraction of electrons in the reconnection

region (the area between the reconnection separatrices)
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Figure 4. 2D histograms illustrating the power law indices
p< (panel a) and p> (panel b), characterizing the nonthermal
tail of the particle energy spectrum produced by magnetic
reconnection, as a function of the dimensionless guide field
strength Bg/B0 and the magnetization σ0.

with γ ≥ γ0, decreases as Bg increases—from ∼ 50%

when Bg = B0/8 to ∼ 25% when Bg = B0, and further

to ∼ 15% when Bg = 8B0.

Our simulations also indicate that γcut ≃ 4σ0 when

Bg/B0 > 1. This threshold was previously proposed

by Werner et al. (2016) for reconnection in the absence

of a guide field (Bg = 0). In contrast, our simula-

tions indicate that γcut grows as Bg decreases. When

Bg/B0 ≪ 1, γcut approaches the Hillas limit (Hillas

1984), which is determined by the particle gyroradius

matching the width of the reconnection layer, namely

rg(γcut) ≃ ⟨Rrec⟩2Lx (see also Zhang et al. 2021; Li et al.

2023), which implies γcut ≃ 2⟨Rrec⟩
√
σ0Lx/de.

Below the break Lorentz factor γ0, particle energy

spectra are extremely hard (p< < 1). In simulations

with σ0 = 16, as displayed in Fig. 3(a), p< ≃ 1/2

when Bg/B0 ≪ 1. In simulations with Bg = B0, as

illustrated in Fig. 3(b), p< ≃ 3/4 when σ0 > 8. The

ultra-hard slope p< < 1 arises because ∆ϵe = κσ0mec
2 is

the typical electron injection energy, leading to γdN/dγ

peaking around γ0. Above γ0, the spectrum steepens,

and the spectral index p> is guide field-sensitive (see

also Li et al. 2023), in addition to depending on magne-

tization, as shown in Figs. 3(a) and 3(b). In compari-

son to the spectrum above γ0 (e.g. Zenitani & Hoshino

2001; Jaroschek et al. 2004; Lyubarsky & Liverts 2008;

Sironi & Spitkovsky 2014; Guo et al. 2015; Werner &

Uzdensky 2017; Hakobyan et al. 2021; Li et al. 2023;

Zhang et al. 2023), the spectrum below γ0 has not re-

ceived significant attention so far. However, given that

γ0 ≃ κσ0, this spectral energy range can be substantial

when σ0 ≫ 1. In the context of an electron-ion plasma,

even as the overall magnetization (including both elec-

trons and ions) approaches unity, σ0 remains signifi-

cantly large. This is because 2σ0 = σ0,e ≃ (mi/me)σ0,i

where mi is the ion mass, while σ0,e and σ0,i correspond

to the magnetization associated with electrons and ions,

respectively.

Figure 4 provides a comprehensive overview of the

spectral indices derived from our simulation campaign.

The spectral index p<, shown in Figure 4(a), exhibits a

weak dependence on Bg/B0 and becomes more sensitive

to σ0 only when σ0 falls outside the asymptotically large

range and Bg/B0 ≳ 1. When σ0 ≫ 1, p< consistently

maintains its hardness, with p< < 1, across all values of

Bg/B0 covered in our study. In contrast, p> exhibits a

stronger dependence on Bg/B0 and a milder sensitivity

to σ0, as depicted in Figure 4(b). The ratio Bg/B0 ∼ 1

marks the transition from p> < 3 to p> > 3. When

Bg/B0 ≪ 1, typical p> values hover around p> ≃ 2. In

contrast, when Bg/B0 ≫ 1, typical p> values tend to

p> ∼ 5, with p> ∼ 6 for the lowest σ0 values considered

in our simulation campaign.

Previous studies of magnetic reconnection within a

turbulence cascade (Comisso & Sironi 2019; Comisso

et al. 2020; Comisso & Sironi 2021, 2022) have shown

that particle energization in the presence of a guide field

gives rise to an energy-dependent pitch-angle anisotropy.

To quantitatively assess this effect within an isolated re-

connection layer, we examine the mean value of sin2 α

as a function of γ − 1, where α is the pitch angle, i.e.

the angle between the particle momentum and the local

magnetic field. Both α and γ are measured in the lo-

cal E × B frame. Here, we investigate the pitch-angle

anisotropy across different Bg/B0 and σ0 values.

Figure 5 shows ⟨sin2 α⟩ is energy-dependent. Distinct

power-law behaviors of ⟨sin2 α⟩ are identifiable within

specific energy ranges. For lepton magnetization σ0 ≫ 1
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Figure 5. Mean of the squared pitch angle sine, ⟨sin2 α⟩,
at late times, t ≃ 3Lx(B

2
0 + B2

g)
1/2/B0c, for simulations

with (a) fixed σ0 = 16 and varying guide field strengths
Bg = (1/8, 1/4, 1/2, 1, 2, 4, 8)B0 and (b) fixed Bg/B0 = 1
and varying lepton magnetization σ0 = (4, 8, 16, 32, 64).
Horizontal dashed black lines indicate the expectation for
isotropic particles, ⟨sin2 α⟩ = 2/3. In addition, dashed lines
indicating power-law slopes are provided for reference.

and relativistic particles, ⟨sin2 α⟩ approximately follow

⟨sin2 α⟩ =


Λ (γ/γminα)

m< , γth < γ < γminα

Λ (γ/γminα)
m> , γminα < γ < γiso

2/3 , γiso < γ < γcut
(5)

where m< and m> are the power-law indices char-

acterizing the negative-slope and positive-slope energy

dependence of the pitch-angle anisotropy, respectively,

Λ ∼ min⟨sin2 α⟩, γminα is the Lorentz factor at which

the pitch-angle anisotropy is strongest, and γiso is the

Lorentz factor at which particles return to a state close

to pitch-angle isotropy.

We can identify three distinct regimes, contingent on

Bg/B0:

1. Bg/B0 ≪ 1: the deviation of ⟨sin2 α⟩ from the

isotropic expectation of 2/3 is generally modest

(although it depends on σ0, as discussed later),

and min⟨sin2 α⟩ is reached at γminα ≪ σ0, while

4
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Figure 6. 2D histograms illustrating the peak anisotropy
min⟨sin2 α⟩ (panel a), along with the power law indices m<

(panel b) and m> (panel c), describing the pitch angle distri-
bution produced by magnetic reconnection, as a function of
the dimensionless guide field strength Bg/B0 and the mag-
netization σ0.

pitch-angle isotropy is restored at γiso ∼ σ0 ≪ γcut
(see Fig. 5(a)).

2. Bg/B0 ∼ 1: ⟨sin2 α⟩ ≪ 2/3 and steep power-

law slopes m< and m> manifest over a particle

energy range characterized by γminα ∼ γ0 and

γiso ∼ 4σ0 < γcut. Accordingly, min⟨sin2 α⟩ scales
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inversely with σ0, and the extension of the rising

range of ⟨sin2 α⟩ is γiso/γminα ∼ 4σ0/γ0 ∼ 20 (see

Figure 5(b)).

3. Bg/B0 ≫ 1: ⟨sin2 α⟩ displays the strongest devi-

ations from isotropy, and γminα ∼ γcut ∼ 4σ0. In

this regime γiso ≫ γcut, i.e. high-energy particles

cannot undergo effective pitch angle isotropiza-

tion. In this case, pitch angle anisotropy is charac-

terized by an extended power law with index m<

(see Figure 5(a)).

In Figure 6, we report the minimum of ⟨sin2 α⟩ (panel
a), along with the power-law slopes m< (panel b)

and m> (panel c), obtained from the complete simu-

lation campaign. The maximum anisotropy, for which

min⟨sin2 α⟩ serves as a proxy, increases with higher

values of Bg/B0 and σ0. For the most extreme case

in Figure 6(a), Bg/B0 = 8 and σ0 = 64, we obtain

⟨sin2 α⟩ ∼ 4 × 10−5, four orders of magnitude below

the isotropic expectation. A demarcation from mod-

erate to very strong depletion of min⟨sin2 α⟩ occurs at

Bg/B0 ∼ 1. Lower values of min⟨sin2 α⟩ are clearly

accompanied by steeper power-law ranges, as shown

in Figures 6(b) and 6(c). The power-law slopes m<

and m> exhibit a significantly more pronounced depen-

dence on Bg/B0 than on σ0. Notably, in the regime

Bg/B0 ∼ 1, m< and m> are almost independent of σ0

within the parameter range explored in this study.

The emergence of pitch angle anisotropy can be under-

stood in terms of a two-stage process, in line with previ-

ous studies of magnetic reconnection within a turbulence

cascade (Comisso & Sironi 2018, 2019, 2021, 2022). Dif-

ferent acceleration mechanisms, such as direct accelera-

tion by the reconnection electric field (Litvinenko 1996),

Fermi reflection (Drake et al. 2006), or pickup acceler-

ation (Möbius et al. 1985), may operate in the initial

stage of particle acceleration. However, as the guide

field strength increases, direct acceleration by the re-

connection electric field becomes progressively more im-

portant (Dahlin et al. 2016; French et al. 2023). When

the initial stage of particle acceleration occurs mostly

in the magnetic field-aligned direction via the reconnec-

tion electric field, particles undergo an increase in their

Lorentz factor as given by dγ/dt ≃ (eErec/mec) cosα ≃
⟨Rrec⟩B0(B

2
0 +B2

g)
−1/2ωL cosα (where we assumed v ≃

c). Simultaneously, the parallel component of the mo-

mentum equation of a particle in a constant parallel

electric field yields d cosα/dt ≃ (eErec/γmec) sin
2 α ≃

⟨Rrec⟩B0(B
2
0 + B2

g)
−1/2(ωL/γ) sin

2 α, resulting in a re-

duction of the pitch angle for the accelerated particles.

This initial acceleration along the magnetic field has to

compete with pitch-angle scattering by magnetic-field
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Figure 7. (a) Examples of time evolutions of γ/σ0 and
cosα from simulations with σ0 = 16 and guide field strengths
Bg = B0/8 (red), Bg = B0 (yellow), and Bg = 8B0 (blue).
The x-axis is scaled by ∆t(c/Lx)[1 + (Bg/B0)

2]−1/2, where
∆t corresponds to the time interval from the particle in-
jection from the thermal pool (γ ≃ γth) to higher Lorentz
factors (γ ≫ γth). (b) Pitch-angle correlation function
⟨cosα cosα0⟩ (normalized by ⟨cos2 α0⟩), computed from the
same simulations. t0 indicates the initial time for the mea-
surement. (c) Pitch-angle scattering timescale tscatt (normal-
ized by Lx/c), determined by fitting the pitch-angle correla-
tion function with the exponential e−t/tscatt , for simulations
with σ0 = 16 and various Bg values. A dashed blue line
indicating 1 + (Bg/B0)

2 is provided for reference.
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fluctuations, which works to isotropize the distribution

of particle pitch angles on the scattering timescale tscatt,

in addition to inducing stochastic particle acceleration

on the timescale tacc ∼ tscatt/β
2
a, where βa represents the

velocity (normalized by c) of the accelerating agents.

The fraction of energy gained in the magnetic field-

aligned direction, as well as the scattering timescale,

are governed by the strength of the guide field with re-

spect to the reconnecting magnetic field. Since tscatt
increases with higher Bg/B0 values, both pitch angle

isotropization and stochastic particle acceleration are

progressively suppressed as Bg/B0 increases. In Fig-

ure 7(a), we show examples of the time evolution of the

Lorentz factor (divided by σ0) and the pitch angle cosine

for particles energized in simulations with lepton mag-

netization σ0 = 16 and different guide field strengths,

namely Bg = (1/8, 1, 8)B0. Particles accelerated with a

low pitch angle (cosα ≃ 1) typically undergo pitch angle

scattering and additional acceleration when the guide

field is small (Bg = B0/8) or moderate (Bg = B0). In

contrast, their pitch angle remains nearly unchanged af-

ter the initial acceleration when the guide field is strong

(Bg = 8B0).

Pitch angle isotropization following the initial accel-

eration stage can be evaluated computing the pitch-

angle correlation function ⟨cosα cosα0⟩ for particles

with | cosα0| ∈ [0.8, 1] and γ ∈ [σ0/2, 2σ0] (i.e., parti-

cles that have undergone magnetic field-aligned acceler-

ation). Figure 7(b) indicates that the decorrelation time

of the pitch-angle cosine is shorter as Bg/B0 decreases.

We can estimate the scattering timescale by fitting a

decaying exponential e−t/tscatt to the pitch-angle cor-

relation function. The resulting timescales for all the

different Bg/B0 simulations with σ0 = 16 are presented

in Figure 7(c). The scattering timescale roughly follows

the relation tscatt ∼ (1 + B2
g/B

2
0)Lx/c. Consequently,

when Bg/B0 ≲ 1, pitch angle scattering operates on

the advection timescale. In contrast, for Bg/B0 ≫ 1, a

significantly larger number of light-crossing times Lx/c

are necessary to fully randomize the small pitch angles

imprinted by the reconnection electric field.

Since tscatt ≫ Lx/⟨vout⟩ for Bg/B0 ≫ 1, in the asymp-

totic limit, the influence of pitch angle scattering on the

pitch angle anisotropy can be neglected. Assuming that

particles initially possess γinit ∼ 1 and that all their en-

ergy gain occurs in the magnetic field-aligned direction,

then v∥/c ∼ (1−1/γ)1/2 for ∆γ = γ−γinit ≫ 1. There-

fore, in this limit, the pitch angle anisotropy scales as

⟨sin2 α⟩ ∝ γ−2 for 1 ≪ γ < γcut. Given that γminα ∼
γcut ∼ 4σ0 in this regime, then min⟨sin2 α⟩ ∼ 1/(4σ0)

2,

which is consistent with the trend reported in Figure 6.

We finally note that in fully 3D magnetic recon-

nection, additional resonant wave interactions and

instability-driven scattering centers, not permitted for

∂/∂z = 0, can serve as extra isotropization channels.

However, since the initial particle acceleration oper-

ates on a timescale much shorter than the scattering

timescale, we anticipate the general applicability of the

results presented here (see Comisso & Sironi 2019). We

will explore this further in our subsequent work.

4. IMPLICATIONS

The concurrent particle acceleration and generation of

energy-dependent pitch angle anisotropy carries several

astrophysical implications. Here, we discuss some of the

most important consequences.

- Synchrotron luminosity. The synchrotron radi-

ation power from an electron is given by Psync =

2σT cUBγ
2(v/c)2 sin2 α in the comoving frame. Here,

σT denotes the electron Thomson scattering cross sec-

tion and UB is the magnetic energy density. Since

Psync ∝ sin2 α, emission mechanisms other than syn-

chrotron radiation can take over even in the presence of

very strong magnetic fields. One such mechanism is the

inverse Compton (IC) scattering of external and syn-

chrotron photons. Neglecting Klein-Nishina effects on

IC scattering, we can express the ratio of synchrotron

to IC luminosity as

Lsync

LIC
=

(
UB

Urad

)
⟨sin2 α⟩ , (6)

where Urad is the radiation energy density, encompassing

both the energy density of the external photon field and

that of the synchrotron photons. Therefore, the IC lu-

minosity is expected to be higher than the synchrotron

luminosity if ⟨sin2 α⟩ < Urad/UB . In cases where the

pitch-angle anisotropy is most extreme, such as when

Bg/B0 ≫ 1 and σ0 ≫ 1, most of the energy is carried

by particles with γ = κσ0. In this scenario, the ratio of

synchrotron to IC luminosity becomes

Lsync

LIC
∼ 1

κ2σ2
0

(
UB

Urad

)
. (7)

Under these conditions, the pitch-angle anisotropy of

reconnection-accelerated particles promotes a suppres-

sion in synchrotron luminosity by a factor of approxi-

mately κ2σ2
0 compared to the isotropic assumption. This

possibility has been recently invoked to explain orphan

γ-ray flares in blazars (Sobacchi et al. 2021a), the spec-

tral energy distributions of blazars and γ-ray bursts

(Sobacchi et al. 2021b), as well as the heating of mag-

netar magnetospheres (Nättilä & Beloborodov 2022).
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- Spectral energy distribution. The synchrotron spec-

trum generated by an anisotropic distribution of non-

thermal particles can markedly differ from that of an

isotropic population (see Comisso et al. 2020; Tavecchio

& Sobacchi 2020). Here, we briefly discuss the princi-

pal features of this spectrum. We characterize the op-

tically thin synchrotron spectrum through the energy

flux, νFν . From the scaling of the emission peak for

electrons with Lorentz factor γ, occurring near the crit-

ical frequency νc = (3/2)γ2νL⟨sinα⟩ ∝ γ2+m/2, and

the scaling of the power radiated by such electrons,

Psync = 2σTcUBγ
2⟨sin2 α⟩ ∝ γ2+m, it is straightforward

to deduce the photon energy flux

νFν ∼ γ
dN

dγ
Psync ∝ ν(3−p+m)/(2+m/2) . (8)

The usual isotropic case, νFν ∝ ν(3−p)/2, is recovered

setting m = 0. Therefore, an anisotropic pitch angle dis-

tribution can significantly harden the synchrotron spec-

trum for m = m> > 0, while it softens the spectrum

for m = m< < 0. For the regime Bg/B0 ∼ 1, we

obtained γminα ∼ γ0. Therefore, using characteristic

values of p> ∼ 2.2 and m> ∼ 2 (see Figs. 4 and 6),

we obtain νFν ∝ ν0.7. This should be contrasted with

the νFν ∝ ν0.4 spectrum observed when the pitch angle

does not depend on particle energy.

Another important point is that the critical syn-

chrotron frequency of the particles with the strongest

pitch angle anisotropy is reduced compared to the

isotropic case. Now,

νc(γminα) ≃
3

2
γ2
minα

(
γminα

γiso

)m>/2

νL , (9)

which is a factor of (γminα/γiso)
m>/2 lower than the crit-

ical frequency in the isotropic scenario (m> = 0). As a

result, pitch-angle anisotropy in the m> range broad-

ens the frequency range of the synchrotron spectrum

in comparison to the isotropic case, while the opposite

holds for the m< range. The hardening of the syn-

chrotron spectrum due to the energy-dependent pitch-

angle anisotropy spans the frequency range given by

νc(γiso)

νc(γminα)
≃

(
γiso

γminα

)(4+m>)/2

. (10)

For the regime Bg/B0 ∼ 1, we estimated γiso/γminα ∼
4σ0/γ0 ∼ 20. Given that typical values of m> for

Bg/B0 ∼ 1 and σ0 ≫ 1 hover around 1.2− 2.6 (see Fig-

ure 6), the hardening of the synchrotron spectrum due

to the pitch-angle anisotropy is anticipated to span a fre-

quency range of 3−4 decades. A similar frequency range

was observed to undergo hardening in recent PIC simu-

lations of magnetically dominated turbulence (Comisso

et al. 2020), and it was poposed as a potential explana-

tion for the origin of the hard radio spectra observed in

pulsar wind nebulae (Gaensler & Slane 2006; Reynolds

et al. 2017) without the need to invoke hard (p < 2)

particle distributions.

- Polarization. We evaluate the degree of linear polar-

ization for particles following power-law distributions in

both energy and pitch angle, as described by Eqs. (4)

and (5). The linear polarization degree can be calcu-

lated as

Πlin =

∫
Gsync(x)⟨sinα⟩

dN

dγ
dγ∫

Fsync(x)⟨sinα⟩
dN

dγ
dγ

. (11)

Here, we have defined Fsync(x) = x
∫∞
x

K 5
3
(ξ)dξ and

Gsync(x) = xK 2
3
(x), with x = ν/νc (Rybicki & Light-

man 1979), where K 5
3
and K 2

3
are modified Bessel func-

tions of orders 5/3 and 2/3, respectively. Therefore,

after computing the integrals we obtain

Πlin =
p+ 1

p+ 7/3 +m/3
. (12)

The result for an isotropic population of particles is re-

covered for m = 0. Pitch angle anisotropy reduces the

degree of linear polarization in the m = m> range,

while it increases it in the m = m< range. In the

regime Bg/B0 ∼ 1, we obtained γminα ∼ γ0 and

γiso ∼ 4σ0 < γcut. Therefore, using p< ∼ 3/4 and

m< ∼ −1.3 as typical values (see Figs. 4 and 6), we

obtain a linear polarization degree of Πlin ∼ 66% within

the range γth < γ < 0.2σ. In the range 0.2σ < γ < 4σ0,

using p> ∼ 2.5 and m> ∼ 2 (see Figs. 4 and 6), we ob-

tain a similar linear polarization degree of Πlin ∼ 64%.

Finally, in the range 4σ0 < γ < γcut, the degree of

linear polarization increases to Πlin ∼ 75%. We ob-

tain a much higher degree of linear polarization for

Bg/B0 ≫ 1, where the pitch-angle anisotropy exhibits

an extended m = m< range (see Figure 5(a)), and

γminα ∼ γcut ∼ 4σ0. In this case, we have again

Πlin ∼ 66% within the range γth < γ < 0.2σ. How-

ever, in the range 0.2σ < γ < 4σ0, using p< ∼ 5 and

m< ∼ −2 as typical values (see Figs. 4 and 6), we ob-

tain a significantly higher linear polarization degree of

Πlin ∼ 90%.

Radiation from an anisotropic electron distribution

could have a significant circular polarization degree.

The circular polarization degree for such a distribution

within a plasma consisting mainly of electrons and ions
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can be evaluated as (Sazonov 1972)

Πcir=
1

γ0

p+ 1

p+ 7/3

Γ

(
3p+ 4

12

)
Γ

(
3p+ 8

12

)
Γ

(
3p− 1

12

)
Γ

(
3p+ 7

12

)
× (2 + p) cot θ − sin θg(γ0, θ)

p
, (13)

where Γ is the Gamma function, and θ is the angle be-

tween the direction of the magnetic field and the line

of sight. The viewing angle is equivalent to the pitch

angle of the electrons that primarily contribute to the

observed radiation. Therefore, by setting cosα = cos θ,

the function g can be expressed as

g(γ0, θ) =

(
1

f(γ, cosα)

∂f(γ, cosα)

∂ cosα

)
γ=γ0

. (14)

The effect of the pitch-angle anisotropy is included in

g(γ0, θ), which is zero for isotropic distributions. There-

fore, a substantial level of circular polarization, with

Πcir ≫ 1/γ0, can be attained with an anisotropic pitch

angle distribution.

- Fast cooling. Electrons with Lorentz factor γ ≫ 1

cool via synchrotron radiation on the timescale tcool =

mec/(2σTUBγ sin
2 α). Particles are strongly cooled if

they radiate a significant fraction of their energy in a

timescale shorter than Lx/⟨vout⟩. The Lorentz factor of

a particle that cool in such timescale can be expressed

as

γcool =
1

2ℓB

1

sin2 α

(
1 +

B2
g

B2
0

)−1/2

, (15)

where

ℓB =
σTUBLx

mec2
(16)

is the magnetic compactness parameter. Particles with

γ > γcool are in a fast cooling regime, while particles

with γ < γcool are in a slow cooling regime. The par-

ticle spectrum is affected by cooling on the timescale

Lx/⟨vout⟩ if it extends above γcool. For Bg/B0 ≳ 1, par-

ticle injection up to γ = γ0 ≃ κσ0 is not affected by

cooling unless

ℓB ≳
B0

2κ⟨sin2 α⟩σ0Bg

∼ 0.1σ0
B0

Bg
. (17)

Under conditions that favor the strongest pitch-angle

anisotropy, namely Bg/B0 ≫ 1 and σ0 ≫ 1, the elec-

tron energy spectrum extends up to γcut ∼ 4σ0, and

the particle spectrum is affected by synchrotron cooling

only if ℓB ≳ 2σ0B0/Bg.

Marginally fast cooling (Daigne et al. 2011; Beniamini

et al. 2018; Xu et al. 2018) and pitch-angle anisotropy

(Lloyd & Petrosian 2000; Yang & Zhang 2018; Goto &

Asano 2022) have been proposed as key factors shaping

the prompt emission spectrum of γ-ray bursts. When

considering an energy-dependent pitch-angle anisotropy,

the resulting cooled particle distribution is nontrivial as

the pitch angle is regulated by the interplay between par-

ticle acceleration, scattering, and cooling. In general,

due to the tcool ∝ 1/ sin2 α dependence, synchrotron

cooling is biased toward cooling particles with larger

pitch angles. With the energy-dependence of pitch-angle

anisotropy given in Eq. (5), tcool ∝ γ−(1+m). There-

fore, within the m< range, cooling becomes stronger

for lower-energy particles when m< < −1. This leads

to a hardening of the particle energy spectrum in the

range controlled by the m< slope (Comisso & Sironi

2021). The faster cooling of lower-energy particles ceases

when m< ≥ −1. This suggests that strong synchrotron

cooling tends to induce and maintain a pitch angle

anisotropy with m< ∼ −1.

- Synchrotron burnoff limit. In the realm of ideal plas-

mas, where the electric field is smaller, or at most equal,

to the magnetic field, it is widely acknowledged that as-

trophysical sources cannot emit synchrotron radiation

above hνburnoff ≃ 160MeV in their rest frame (Guilbert

et al. 1983; de Jager et al. 1996). However, this con-

straint does not apply when dealing with particle distri-

butions characterized by small pitch angles. On general

grounds, the Lorentz factor for which the radiation re-

action force F sync
RR = 2σT γ

2UB sin2 α for γ ≫ 1 balances

the accelerating force Facc = eE, known as the radiation

reaction limit, is given by

γrad =

(
eE

2σTUB sin2 α

)1/2

, (18)

in the comoving frame. The critical synchrotron photon

energy emitted by a population of particles limited by

radiation reaction is then given by

hνrad =
3

2
ℏγ2

radωL⟨sinα⟩ ≃
16

⟨sinα⟩
B2

0

B2
0 +B2

g

MeV ,

(19)

where ℏ is the reduced Planck constant, and we used

Erec = ⟨Rrec⟩B0 as the relevant electric field. The max-

imum synchrotron photon energy depends only on the

ratio Bg/B0 and the pitch-angle anisotropy, which is

modulated by the lepton magnetization σ0. Given that

⟨sinα⟩ can reach very low values, there is no strict upper

limit of 160MeV. For Bg/B0 ≳ 1, taking particles at

γ = γ0, one has

hνrad ≃ 3σ0

(
B0

Bg

)2

MeV , (20)
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Therefore, for σ0 > 50(Bg/B0)
2, reconnection emits

synchrotron radiation above the ideal limit hνburnoff ≃
160MeV. This is essential for explaining the emissions

observed from some of the most extreme astrophysical

accelerators, such as the γ-ray flares from the Crab Neb-

ula (Bühler & Blandford 2014).

- Beaming. Energy-dependent pitch-angle anisotropy

can result in highly beamed radiation aligned with the

magnetic field direction. This beaming effect is funda-

mentally distinct and anticipated to be more prevalent

than the Doppler beaming associated with the bulk mo-

tions in the reconnection layer (Giannios et al. 2009;

Nalewajko et al. 2011; Petropoulou et al. 2016). For

a plasma with a general composition, and by applying

Eq. (3) for an arbitrary plasma magnetization, the max-

imum Lorentz factor of the bulk flow within the recon-

nection layer is given by

Γbulk,max ≃
(
1 + σg + σ0

1 + σg

)1/2

. (21)

This implies that even a moderate guide field

strength Bg ≳ B0/3 or an overall magnetization

B2
0/[4πc

2(men0 + mini)] = σ0/(1 + σ0/σ0,i) ≲ 1 re-

sults in Γbulk,max ∼ 1, effectively eliminating the pos-

sibility of bulk outflow beaming. On the other hand,

the beaming associated with the pitch-angle anisotropy

only requires high lepton magnetization, σ0 ≫ 1. In this

case, the alignment of particle momentum with the local

magnetic field reaches a maximum at a Lorentz factor

associated with the lepton magnetization (γminα ≪ σ0

for Bg/B0 ≪ 1, γminα ∼ κσ0 for Bg/B0 ∼ 1, and

γminα ∼ 4σ0 for Bg/B0 ≫ 1). As particles reach

higher Lorentz factors, well above γminα, their align-

ment with the magnetic field gradually diminishes due
to pitch-angle scattering off magnetic field fluctuations,

which occurs on a timescale tscatt much longer than the

timescale

tminα =
γminα

⟨Rrec⟩
mec

eB0
(22)

associated with the initial particle acceleration that

leads to small pitch angles. Therefore, particles with

γ ∼ γminα are expected to predominantly emit radia-

tion in the direction of B0 when Bg/B0 ≪ 1 (Cerutti

et al. 2012b) and in the direction of Bg when Bg/B0 ≳ 1

(Comisso et al. 2020). As the particles’ Lorentz factor

increases to values γ ≫ γminα, their emission becomes

increasingly isotropic, and particularly pronounced in

the direction perpendicular to the guide field Bg when

cosα ≃ 0, since this stage of acceleration is governed by

the ideal-MHD electric field (a similar picture holds for

relativistic turbulence (Comisso & Sironi 2019)).

When radiation emission occurs on a timescale

longer than that required for imprinting the pitch-angle

anisotropy but shorter than the scattering timescale, i.e.,

tminα ≪ tcool ≪ tscatt, the emitted radiation, either via

synchrotron or inverse Compton scattering, is beamed

into a solid angle ∆Ω ∼ ⟨sin2 α⟩ around the local mag-

netic field. The extent of ∆Ω is tied to the particle’s en-

ergy due to the energy-dependent nature of pitch-angle

anisotropy, as outlined in Eq. (5). For Bg/B0 ≳ 1, one

has

∆Ω ∼ 1

(κσ0)2
, (23)

for particles at γ = γ0. In the regime Bg/B0 ≫ 1, the

beaming effect intensifies as the Lorentz factor increases,

culminating in a maximum beaming with a solid angle

of ∆Ω ∼ 1/(4σ0)
2 at the cutoff energy.

In the presence of strong beaming, the emission from

a reconnecting current sheet can only be observed if the

local magnetic field is closely aligned with the observer’s

line of sight. This effect can lead to rapid variability of

the emission. When multiple active radiation beams are

present and the beams are distributed isotropically, the

variability timescale δT for an emission event spanning

a timescale T depends on the pitch angle as

δT

T
∼ Nα⟨sin2 α⟩ , (24)

where Nα represents the number of active beams. This

“lighthouse effect” has been exploited in Sobacchi et al.

(2023) to potentially explain the ultrafast variability of

γ-ray flares from active galactic nuclei. In this scenario,

the variability resulting from pitch-angle anisotropy is

frequency-dependent, in contrast to the achromatic vari-

ability associated with ultrarelativistic bulk motions

(Lyutikov 2006; Narayan & Kumar 2009; Lazar et al.

2009; Giannios et al. 2009).

- Temperature anisotropy. Pitch-angle anisotropy,

where electrons’ velocities are more aligned with mag-

netic field lines, results in an anisotropic electron tem-

perature, with Te,∥ > Te,⊥. The temperatures Te,∥ =

Pe,∥/kBne and Te,⊥ = Pe,⊥/kBne are associated with

electron pressures parallel and perpendicular to the

magnetic field direction, respectively, with Pe,∥ and Pe,⊥
representing the corresponding pressures. In cases where

the pitch angle anisotropy is most extreme, such as when

Bg/B0 ≫ 1 and σ0 ≫ 1, the electron temperature

anisotropy intensifies, resulting in Te,∥ ≫ Te,⊥. The sus-

tainability of high levels of temperature anisotropy de-

pends on the extent to which it’s allowed by anisotropy-

driven instabilities. For Te,∥ ≫ Te,⊥, the anisotropy

might be limited by the onset of the firehose instability

(Gary 1993), which is triggered when enough pressure
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anisotropy is generated to counteract the magnetic ten-

sion. The threshold for triggering the parallel firehose

instability in an electron-ion plasma is given by (Barnes

& Scargle 1973)

Pe,⊥

Pe,∥
< 1− 2

βe,∥
, (25)

where βe,∥ = 2θe,∥/σe and θe,∥ = kBTe,∥/mec
2. In pair

plasmas, where both electrons and positrons contribute

equally to the instability, the threshold condition is mod-

ified by βe,∥ → 2βe,∥. In the magnetically dominant

regime under our current focus, βe,∥ ≪ 1, which enables

the maintenance of strong temperature anisotropies.

Proper modeling of temperature anisotropy is criti-

cal for correctly interpreting synchrotron radiation from

astrophysical plasmas, and it can significantly impact

conclusions drawn from observations when compared to

models that assume isotropic particle distributions. Re-

cent work by Galishnikova et al. (2023) has indeed shown

that temperature anisotropy in accreting plasmas signif-

icantly affects the interpretation of mm-wavelength ob-

servations, such as those related to black hole imaging

for Sgr A* and M87* (Event Horizon Telescope Collab-

oration et al. 2019, 2022).

5. CONCLUSIONS

In this article, we have investigated the concur-

rent generation of energetic particles and pitch-angle

anisotropy by magnetic reconnection in magnetically

dominated plasmas. Using rigorous first-principles PIC

simulations, we demonstrated that reconnection-driven

particle acceleration imprints an energy-dependent

pitch-angle anisotropy and gives rise to broken power

laws in both the particle energy spectrum and the

pitch angle anisotropy. The properties of reconnection-

accelerated particle distributions depend strongly on the

relative strength of the guide field compared to the re-

connecting magnetic field (Bg/B0), in addition to the

lepton magnetization (σ0). These are pivotal in shaping

the particle energy spectrum and pitch angle anisotropy.

The break Lorentz factor γ0, which separates the two

power-law ranges in the particle energy spectra, depends

on lepton magnetization and exhibits minimal sensitiv-

ity to the guide field’s strength. This break Lorentz fac-

tor is a significant fraction of the lepton magnetization,

specifically γ0 = κσ0, with κ ≃ 0.2. For σ0 ≫ 1, this

results in extended pre-break ranges. Below γ0, the par-

ticle energy spectrum is governed by particle injection,

yielding a remarkable hard slope (p< ≃ 1/2− 3/4) that

is robust to variations in guide field strength and magne-

tization. In contrast, the power-law range above γ0 ex-

hibits significant sensitivity to the guide field’s strength

(p> ∼ 1.5 − 5 for σ0 ≫ 1), in addition to its depen-

dence on magnetization. The extension of this second

power-law range also hinges on the guide field strength,

with Bg/B0 ≫ 1 leading to a high-energy cutoff Lorentz

factor γcut that is proportional to σ0, while Bg/B0 ≪ 1

results in γcut approaching the Hillas limit of the recon-

nection layer.

The energy-dependent pitch-angle anisotropy is char-

acterized by the Lorentz factor at which the pitch angle

α reaches its minimum, γminα, and the Lorentz factor

at which particles return to a state close to pitch-angle

isotropy after being energized, γiso. The existence of the

latter depends on the strength of the guide field. Essen-

tially, we can distinguish three regimes, depending on

the relative strength of the guide field in comparison to

the reconnecting magnetic field. For Bg/B0 ≪ 1 (mod-

erate anisotropy), γminα ≪ σ0, γiso ∼ σ0 ≪ γcut, and

the deviation of ⟨sin2 α⟩ from isotropy is modest though

noticeable. For Bg/B0 ∼ 1 (strong anisotropy), γminα ∼
γ0, γiso ∼ 4σ0 < γcut, the negative slope (m<) and pos-

itive slope (m>) of the energy dependence exhibit steep

power laws (|m| ≳ 1), and the pitch-angle anisotropy

can reach min⟨sin2 α⟩ ∼ 1/(κσ0)
2. For Bg/B0 ≫ 1 (ex-

treme anisotropy), γminα ∼ γcut ∼ 4σ0, the negative

slope (m<) dominates the energy range, and the pitch-

angle anisotropy can reach min⟨sin2 α⟩ ∼ 1/(4σ0)
2.

We discussed several astrophysical implications of

the concurrent particle acceleration and generation of

energy-dependent pitch-angle anisotropy. In particular:

(1) Pitch-angle anisotropy progressively suppresses syn-

chrotron luminosity with increasing guide field, reaching

roughly a factor of κ2σ2
0 when Bg/B0 ≫ 1 and σ0 ≫ 1.

(2) The synchrotron energy flux for an energy-

dependent pitch angle distribution is given by νFν ∝
ν(3−p+m)/(2+m/2), and thus it hardens in the m = m>

range compared to an energy-independent pitch angle,

while softening occurs in the m = m< range. For

Bg/B0 ∼ 1, we estimate the hardening of the syn-

chrotron spectrum spans approximately 3 − 4 decades

in frequency.

(3) The degree of linear polarization is given by Πlin =

(p+1)/(p+7/3+m/3), and thus pitch angle anisotropy

reduces it in the m = m> range, while increasing it in

the m = m< range. The anisotropic pitch angle distri-

bution can also increase the degree of circular polariza-

tion to Πcir ≫ 1/γ0.

(4) Pitch-angle anisotropy enforces stricter requirements

for entering the fast cooling regime. When Bg/B0 ≳ 1,

particle injection remains unaffected by cooling unless

the magnetic compactness parameter ℓB ≳ 0.1σ0B0/Bg.

For highly anisotropic distributions, strong synchrotron

cooling is expected to induce a pitch angle anisotropy
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with m< ∼ −1.

(5) Particles accelerated by reconnection can emit ra-

diation at energies far exceeding the burnout limit,

hνburnoff ≃ 160MeV. When Bg/B0 ≳ 1, a substan-

tial fraction of radiation can be emitted up to hνrad ≃
3σ0(B0/Bg)

2MeV.

(6) Energy-dependent pitch-angle anisotropy can re-

sult in highly beamed radiation aligned with the mag-

netic field direction, leading to fast variability. In

this scenario, the variability resulting from pitch-angle

anisotropy is frequency-dependent, in contrast to the

achromatic variability associated with the Doppler

beaming from bulk motions.

(7) Pitch-angle anisotropy results in an anisotropic elec-

tron temperature, with Te,∥ > Te,⊥. In the magneti-

cally dominated regime, very high levels of temperature

anisotropy can be sustained against plasma instabilities.

In magnetically dominated collisionless plasmas, pitch

angle anisotropy is anticipated as the norm rather

than the exception. Knowledge of both the particle

energy spectrum and pitch-angle anisotropy is neces-

sary to understand the radiation signatures emitted by

energized particles. This work has provided a first-

principles description of nonthermal particle acceler-

ation in reconnection, encompassing both the parti-

cle energy spectrum and energy-dependent pitch-angle

anisotropy. This will enables us to develop reliable ra-

diative models with improved predictive power com-

pared to current approaches that neglect pitch angle

anisotropy.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Emanuele

Sobacchi and Lorenzo Sironi. This research is sup-

ported by the NASA ATP award 80NSSC22K0667. We

acknowledge computing resources from Columbia Uni-

versity’s Shared Research Computing Facility project,

which is supported by NIH Research Facility Improve-

ment Grant 1G20RR030893-01, and associated funds

from the New York State Empire State Development,

Division of Science Technology and Innovation (NYS-

TAR) contract C090171.

REFERENCES

Barnes, A., & Scargle, J. D. 1973, ApJ, 184, 251,

doi: 10.1086/152324

Beniamini, P., Barniol Duran, R., & Giannios, D. 2018,

MNRAS, 476, 1785, doi: 10.1093/mnras/sty340

Bessho, N., & Bhattacharjee, A. 2012, ApJ, 750, 129,

doi: 10.1088/0004-637X/750/2/129

Birdsall, C. K., & Langdon, B. 1985, Plasma Physics via

Computer Simulation (McGraw-Hill)

Biskamp, D. 2000, Magnetic Reconnection in Plasmas,

Vol. 3

Bühler, R., & Blandford, R. 2014, Reports on Progress in

Physics, 77, 066901, doi: 10.1088/0034-4885/77/6/066901

Buneman, O. 1993, in “Computer Space Plasma Physics”,

Terra Scientific, Tokyo, 67
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